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he poet W. H. Auden, writing about 
the sad state of his mathematical 
education, recalled the mnemonic he 
was taught, 

Minus times minus equals plus:
The reason for this we need not discuss.
We all recognize that “because I said so” is 

not an effective teaching method. But, can you 
explain why the product of two negative numbers 
is positive? 

Here’s a series of questions a math educator 
asked University of Northern Iowa students: 
It is zero degrees out. The temperature is 
decreasing two degrees per hour. What will the 
temperature be in three hours? “Negative six!” 
they replied. What was it three hours ago? After 
a pausing to think it through, they yelled “Six!” 
There we have it: Negative two times negative 
three equals positive six. And they understood, 
really understood. 

What about complex numbers? Did you 
dutifully accept the square root of negative one 
when you first saw it, or did you resist? Most of 
us had no philosophical problems when we were 
introduced to vectors, functions, and matrices. 
But when Mr. Armstrong or Ms. Hansen expected 
us to accept a number, i, that created a negative 
number when squared, many of us cried foul. 
You can’t square a number and get a positive 
result. We’ve taken the time to show that 
negative times negative equals positive. And 
positive times positive equals positive.

Our objections were not to complex numbers 
per se, but rather to taking the square root of a 
negative number. We’d forgive you for thinking 
you can’t have one without the other. But, as 

we’ll see, engineers use complex numbers all the 
time, and they don’t resort to the obscenity of 
taking square roots of negative numbers.

The Standard Justifications
Textbooks and teachers define i by the relation 

= −i 1.2  (They don’t define i as the square root 
of −1 because in the complex number system, −1 
has two square roots, i and −i.) Then they add 
i to the set of real numbers and use a touch of 
algebra to get the complex numbers. 

There are two ways they made rational sense 
of i. Yes, two. 

Pragmatic: “Complex numbers are used 
in studying wave motion in electric circuits” 
(Connally, Hughes-Hallett, Gleason, et al. 
Functions Modeling Change: A Preparation for 
Calculus). Or, “We need to be able to completely 
factor polynomials.” In other words, “complex 
numbers are useful, so we study them.” 

Theoretical: “Extending the real numbers 
to include a solution to the equation = −x 12  is 
analogous to extending the integers to include a 
solution to the equation =x2 1” (Cohen, Lee, and 
Sklar, Precalculus). In short, “because I said so.”

There are problems with both approaches. 
Pragmatic: Are complex numbers useful in 

the real world? Yes, but so is the tooth fairy—
as a way of getting children to be happy about 
the scary prospect of losing a tooth. While the 
pragmatic approach is an honest one, it isn’t a 
satisfying approach for many students. 

Theoretical: Do complex numbers allow us to 
solve otherwise unsolvable equations? Sure, but 
mathematics is lousy with unsolvable equations 
such as =x0 5 and ( )=

→
y x xlim / ,

x 0
 and we 
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don’t violate basic mathematical laws to invent 
solutions to them.

It is good to bristle at the existence of i. 
If a teacher writes + = +x x16 4 on the 
whiteboard, is it the good student or the poor 
student who nods, smiles, and silently copies the 
mistake into a notebook? If you complained that i 
was a silly thing because it didn’t exist, you were 
right. So, let’s do complex numbers without it.

The Way of the Engineer
Two boxers are on either side of you intending 
to use your head as a punching bag, repeatedly 
punching with a nice, even frequency. If each 
boxer is throwing 30 punches per minute, how 
many punches hit your head in 60 seconds? 
It depends. If they throw their punches 
simultaneously, it is going to hurt, because 

+ =30 30 60. However, if one fist is advancing 
while the other is retreating, then by weaving 
back and forth, you can avoid all the punches, 
and + =30 30 0 (see figure 1).

As a more serious example, what do we get when 
we add a cosine curve with amplitude 1 to one with 
amplitude 2? A cosine wave of amplitude + =1 2 3, 
if they are in sync, as in figure 2.

But if they are not in sync, there are other 
possibilities: + = −1 2 1, + =1 2 5, or any number 
in between −1 and 3, as shown in figure 3. In the 
context of adding cosine waves (which is done 
all the time in signal processing and electrical 
engineering), we can’t just say + =1 2 3.

Just as vectors are quantities with a 
magnitude and a direction, we can think of 
sinusoidal functions with a fixed frequency as 
quantities with a magnitude and a phase. We 
call such quantities phasors and denote them 
(magnitude) ∠ (phase).

Figures 2 and 3 show the addition of pairs 
of cosine curves that are completely in phase, 
180 degrees out of phase, and 90 degrees out 
of phase. The pair in figure 3b have amplitudes 

(a) (b)

Figure 2. 1 + 2 = 3.

Figure 3. (a) 1 2 1.+ = −  (b) 1 2 5.+ =

(a)

(b)

1 and 2 and are 90 degrees out of phase. The 
sum has amplitude 5 and is about 63 degrees 
out of phase. In our new notation we would 
write: ∠ ° + ∠ ° ≈ ∠ °1 0 2 90 5 63 .

As we shall see, phasors are the complex 
numbers in disguise. But we have defined 
them without doing anything ridiculous or 
objectionable. We can’t hold ∠ °2 90  apples  
in our hand. But we can’t hold (0,2) apples,  
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Figure 1. (a) 30 + 30 = 60. (b) 30 + 30 = 0. 
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either. Phasors do not represent a number of 
apples.

Sums of Phasors
As our previous examples show, the sum of two 
sinusoidal functions with the same frequency is 
another sinusoidal function of that frequency. But 
it is messy to compute the phase and magnitude 
of the sum. Fortunately, it is easy to compute the 
sum if we view phasors as vectors. In fact, phasor 
is a portmanteau of “phase vector.”

We can represent a phasor θ∠r  as a vector 
rooted at the origin: r is the length of the 
vector, and θ is the angle the vector makes with 
the positive x-axis (see figure 4). If the tip of 
the vector is at (x,y), we write this phasor as 

+x yj. Note that engineers use j to specify the 
y-coordinate because they use i for current (from 
the French intensité de courant) and because j 
corresponds to the unit vector j.

We add phasors just as we add vectors. (We omit 
the proof that this sum of vectors is equivalent to 
the sum of the sinusoidal functions.) To compute 
the sum in figure 3b, we convert the phasors to 
x yj+  notation, add, and then convert back to 
(magnitude) ∠ (phase) notation: 

∠ ° + ∠ ° = + + +j j1 0 2 90 (1 0 ) (0 2 )

= +

= ∠

≈ ∠ °

j1 2

5 arctan(2)

5 63 .

Products of Phasors
To multiply phasors, we multiply the magnitudes 
and add the phases:

θ θ θ θ∠ ∠ = ∠ +a a a a( )( ) ( )1 1 2 2 1 2 1 2 .

Figure 4. The phasor r x yj.θ∠ = +  

This definition generalizes the multiplication of 
real numbers. For instance, 

− ⋅ = ∠ ° ∠ ° = ∠ ° = −2 3 (2 180 )(3 0 ) 6 180 6

and

− − = ∠ ° ∠ ° = ∠ ° = −( 2)( 3) (2 180 )(3 180 ) 6 0 6.

The reader can verify that phasor addition and 
multiplication satisfy all the requirements of a field: 
They satisfy the distributive property, every nonzero 
phasor has a multiplicative inverse, and so on. 

This definition also gives multiplication a 
geometric significance. We can think of taking the 
first phasor, multiplying its length by a2, and then 
rotating it by θ .2  For example, a double rotation 
by 90 degrees is a rotation by 180 degrees. So, 

∠ ° ∠ ° = ∠ °(1 90 )(1 90 ) 1 180 , or in other notation, 
= −j 1!2  Consequently, phasor arithmetic is just 

complex arithmetic in disguise. Thus, we can define 
our x yj+  as a “complex number,” and we can do 
anything we want with them. 

But the main idea is this: = −j 12  is not a 
definition. It is a notational accident! The statement 
is just saying that when we take a cosine wave that 
is 90 degrees out of phase with a reference wave, 
and we shift it another 90 degrees out of phase, 
we get one that is 180 degrees out of phase. In 
other words, if you make two quarter-turns, the net 
result is a half turn.

What’s not to like?  
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